LINE

    Text:AAAPrint
    Sci-tech

    Battery tech elevates aerial drones

    2024-12-13 10:53:33China Daily Editor : Li Yan ECNS App Download

    Test flights supported by high-energy density batteries successful in Dalian

    Chinese scientists have made new progress in lithium-ion battery technology, culminating in the successful integration of high-energy density, wide-ranging-temperature batteries into a new industrial-grade composite-wing aerial drone.

    The innovative drone recently underwent a test flight in Dalian, Liaoning province.

    During the procedure, the drone completed key maneuvers such as takeoff, ascent, high-speed cruising and landing, during a high-quality three-hour test flight in the airspace over Changhai county.

    "The battery module energy density reaches 340 watt-hours per kilogram, enabling stable operations in a wide temperature range from — 40 C to 60 C," said Chen Zhongwei, a professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS).

    Chen, leading a dedicated team, spearheaded the development of the batteries, while the drone itself was designed by the Shenyang Institute of Automation, CAS.

    The drone was equipped with high-energy density lithium batteries, achieving an energy density of up to 400 watt-hours per kilogram, increasing its endurance by 20 to 40 percent.

    "This fully validated the efficient energy storage capacity and operational stability of high-energy density lithium batteries," Chen said.

    The successful application of high-energy density, wide-temperature lithium batteries provides reliable power support for drones operating in cold regions, emergency rescue, patrol and monitoring scenarios.

    "It not only enhances the operational performance and efficiency of drones, but also injects strong momentum into the development of the low-altitude economy industry chain," he said.

    "Meanwhile, this technology opens up vast application prospects in fields such as electric aviation and high-end equipment manufacturing," said Chen.

    He said that to achieve such a high energy density while meeting the stringent requirements of a wide temperature range, the research team made breakthroughs in several core technologies.

    By innovatively designing high-nickel ternary cathode materials and optimizing silicon-carbon composite anodes, the battery's specific capacity was significantly enhanced. Simultaneously, the optimization of cathode-anode capacity helped realize improved energy storage efficiency, Chen added.

    A specially formulated ultra-low-temperature electrolyte, incorporating low-freezing-point solvents and functional additives, significantly lowered the freezing point, ensuring ion conductivity and charge-discharge efficiency in environments as cold as — 40 C.

    A new composite separator, with high-temperature resistance and low-temperature durability, not only enhanced stability across a wide temperature range, but also ensured comprehensive battery safety.

    Moreover, the battery's structural design utilized an advanced multilayer composite strategy, further optimizing thermal management and packaging processes.

    "This significantly improved the battery's energy density, life cycle and adaptability to temperature variations," said Chen.

    Related news

    MorePhoto

    Most popular in 24h

    MoreTop news

    MoreVideo

    LINE
    Back to top About Us | Jobs | Contact Us | Privacy Policy
    Copyright ©1999-2024 Chinanews.com. All rights reserved.
    Reproduction in whole or in part without permission is prohibited.
    [網上傳播視聽節目許可證(0106168)] [京ICP證040655號]
    [京公網安備 11010202009201號] [京ICP備05004340號-1]
    主站蜘蛛池模板: 礼泉县| 梅河口市| 阜康市| 海盐县| 台前县| 蒙阴县| 卢湾区| 喀喇| 大足县| 临夏市| 南昌市| 页游| 博爱县| 临高县| 宁夏| 内黄县| 泾阳县| 高陵县| 邢台县| 拜城县| 内丘县| 苗栗县| 石柱| 毕节市| 合作市| 巴塘县| 华蓥市| 建始县| 桓台县| 富源县| 绍兴市| 奇台县| 将乐县| 大厂| 无为县| 万州区| 保德县| 利津县| 普定县| 吉木乃县| 扶沟县|