LINE

    Text:AAAPrint
    新聞中心

    Existence of massive first-generation stars with 260 solar masses confirmed

    2023-06-08 08:02:01chinadaily.com.cn Editor : Li Yan ECNS App Download

    A new study led by Chinese scientists has confirmed the existence of first-generation stars with 260 solar masses for the first time by finding evidence of the existence of pair-instability supernovae (PISNe) which evolved from the first stars to appear in the early Universe.

    Previously, studies had only confirmed the existence of first-generation stars of under 100 solar masses and so according to the study published in the journal Nature on Wednesday, these latest results change the understanding of the mass distribution of the first generation of stars.

    The breakthrough was based on observations by China's Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) will have a "profound impact" on the understanding of star formation and galactic chemical evolution in the early Universe, according to Zhao Gang, whose team from the National Astronomical Observatories under the Chinese Academy of Sciences led the study.

    The first stars illuminated the Universe during the Cosmic Dawn, ending the cosmic "dark ages" that followed the Big Bang. However, the distribution of mass is one of the great unsolved mysteries.

    Previous theoretical studies of first-generation stars predicted that their mass could be up to several hundred solar masses and that first-generation stars with masses between 140 and 260 solar masses would likely end up as PISNe.

    PISNe are different to ordinary supernovae and would have left a unique chemical signature in the atmospheres of next-generation stars. However, no such signature had been found, and so the existence of these supernova had never been observed.

    However, this latest study led by Zhao identified a chemically unusual star in the Galactic halo based on observations by the LAMOST and the Hawaii-based Subaru Telescope, which is run by Japan.

    Furthermore, the star's chemical makeup is consistent with previous predictions about PISN resulting from first-generation stars, which confirms the existence of PISNe in the early Universe, according to Xing Qianfan, primary author of the study and researcher at the CAS' National Astronomical Observatories.

    The team also included researchers from CAS' Yunnan Observatories, the National Astronomical Observatory of Japan and Monash University, Australia.

    Reviewers commented in Nature that the paper presents the first definitive association of a Galactic halo star with an abundance pattern originating in a PISN.

    They said that they hope to deepen understanding of galactic evolution through the discovery of more chemically peculiar stars either by the LAMOST, or the future Chinese Space Station Telescope and the Xuntian Space Telescope.

    Related news

    MorePhoto

    Most popular in 24h

    MoreTop news

    MoreVideo

    LINE
    Back to top About Us | Jobs | Contact Us | Privacy Policy
    Copyright ©1999-2023 Chinanews.com. All rights reserved.
    Reproduction in whole or in part without permission is prohibited.
    [網上傳播視聽節目許可證(0106168)] [京ICP證040655號]
    [京公網安備 11010202009201號] [京ICP備05004340號-1]
    主站蜘蛛池模板: 泗水县| 韩城市| 哈密市| 抚顺县| 利川市| 道真| 全椒县| 武陟县| 永善县| 兰溪市| 剑河县| 伊金霍洛旗| 英德市| 陕西省| 东山县| 临朐县| 大邑县| 左贡县| 锡林郭勒盟| 遂昌县| 鄂托克旗| 虹口区| 海原县| 贵阳市| 平邑县| 泗阳县| 纳雍县| 湘乡市| 西和县| 开江县| 徐汇区| 随州市| 凤山市| 阳朔县| 岗巴县| 高雄市| 黄石市| 阿坝| 旬阳县| 定结县| 关岭|